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Abstract. We report an extension of the theory of Sheng, Xing and Wang (SXW) (Sheng L, Xing
D Y and Wang Z D 1995Phys. Rev.B 517325), which permits the calculation of size effects from
the statistical properties that characterize the surface on a microscopic scale, for samples in which
the average height–height autocorrelation function (ACF) is described either by a Gaussian or by
an exponential. We also report measurements of the topography of a gold film deposited on a mica
substrate using a scanning tunnelling microscope (STM) on a gold sample 70 nm thick deposited
under ultrahigh vacuum on a mica substrate preheated to 300◦C. From the STM images we
compute the average ACF which characterizes the surface of the film on the scale of 10 nm×10 nm,
and determine by least-squares fitting the r.m.s. amplitudeδ and the lateral correlation lengthξ
corresponding to a Gaussian and to an exponential that best represent the ACF data. Using the
modified SXW (mSXW) theory and a Gaussian and an exponential representation of the ACF data,
we calculate the quantum reflectivityR characterizing the interaction between the electrons and the
surface, and the decrease in conductivity1σ attributable to electron–surface scattering, for mean
free paths 2.5 nm6 ` 6 1000 nm. We compare the predictions of the classical Fuchs–Sondheimer
(FS) model for the average quantum reflectivityR = 〈R〉, calculated with the mSXW model, with
the predictions of the quantum theory, using both the Gaussian and the exponential representation
of the ACF. We find that1σ predicted by FS theory forR = 〈R〉 exceeds that predicted by the
quantum mSXW theory, by an amount that increases with increasing`. This discrepancy can
be traced to the angular dependence of the quantum reflectivityR[cos(θ)]. We also find that the
decrease in conductivity1σ predicted by mSXW theory for a Gaussian representation of the data
is larger than that predicted for an exponential representation of thesame ACF data. We attribute
this to the fact that the reflectivityR is determined by the Fourier transform of the ACF, and the
Gaussian and the exponential that best represent the ACF data exhibit Fourier transforms that are
similar in the regions wherekξ ∼ 1, but are different in the regions wherekξ < 1 andkξ > 1 (k:
wave vector).

One of the fundamental problems in solid-state physics, which has attracted the attention
of researchers for over fifty years, relates to the effect of electron–surface scattering on the
transport properties of thin metallic and semiconducting films—what is known as ‘size effects’.
The theoretical work concerning size effects focused for many decades on the use of classical
models based on solutions of the Boltzmann transport equation, where the effect of the rough
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surface is incorporated into the boundary conditions that must be satisfied by the electron
distribution function, via a specularity parameterR that represents the fraction of electrons,
06 R 6 1, that are specularly reflected upon colliding with the rough surface [1].

It is well known that this approach is inadequate for very thin, high-purity samples, for
which the film thicknesst is much smaller than the impurity mean free path`. In the limit where
` goes to infinity, the conductivity diverges as ln(`/t), an unphysical result that arises from the
omission of quantum effects in the classical theory. To overcome these shortcomings, a number
of transport theories applicable to several special cases have been published which provide a
quantum mechanical description of transport [2–4]. The quantum transport theories succeeded
in describing the experimental data on ultrathin films of CoSi2 [5]. These theories were recently
generalized by Sheng, Xing and Wang (SXW), who proposed a unified formulation that permits
the calculation of the resistivity arising from electron–surface scattering in continuous films
of arbitrary thickness [6]. It has been shown that:

(a) in the thick-rough-film limit where quantum effects can be neglected and bulk scattering
dominates over surface scattering, the SXW theory reproduces the classical result of Fuchs
and Sondheimer (FS) [1, 6];

(b) in the limit where surface and bulk scattering are comparable, the SXW theory reproduces
the result of Trivedi and Ashcroft [3, 6];

(c) in the limit of ultrathin films where surface scattering is expected to dominate over bulk
scattering, the SXW theory reproduces the result of Fishman and Calecki [4, 6].

In their treatment, SXW modelled the surface roughness by a white-noise surface profile,
assuming that the Fourier transform of the height–height autocorrelation function (ACF) that
on average characterizes the surface is a constant independent of the in-plane momentum
[6]. The SXW theory can be extended beyond the white-noise approximation to allow the
calculation of the resistivity arising from electron–surface scatteringfrom first principles,
from the information contained in the surface roughness profile. A formalism that permits
the calculation of the macroscopically observable size effects from the statistical properties
that characterize the surface on a microscopic scale has been one of the goals of theoretical
research for decades; consequently such an extension is highly desirable. In this letter we
present an extension of SXW theory to samples in which the average ACF is represented
either by a Gaussian or an exponential. We also present, for the first time, a comparison
between the classical FS model and the quantum mSXW model for the range of mean free
path 2.5 nm6 ` 6 1000 nm, using both a Gaussian and an exponential representation of the
ACF. The ACF data were obtained from the surface topography of a gold film 70 nm thick
deposited under UHV on a mica substrate preheated to 300◦C, measured with a scanning
tunnelling microscope (STM).

To summarize results already published, the SXW formalism shows that the many-body
quantum theory leads to a reformulation of the FS model that includes the effects of surface
scattering via a reflectivity parameterR that can be calculated from equation (7) in reference [6]:

R[k‖] = [(1− kzQ(k‖))/(1 + kzQ(k‖))]2

whereQ(k‖) represents the dissipative part of the self-energy of the electron gas due to electron–
surface scattering andk2

z = k2
F−k2

‖ , wherekF stands for the Fermi momentum andk‖ = (kx, ky)
represents the in-plane momentum. The ratio of the film conductivityσ to the bulk conductivity
σ0 may be computed in terms of the reflectivityR:

1− σ
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wheret is the film thickness,̀ the carrier mean free path,un = qn/kF = cosθn = nπ/(tkF ),
Xc = tkF /π ,Nc = int(Xc) where int(M) stands for the integer part ofM,

X0 = 3

2

[
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3
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)2(
1 +

1

Nc

)(
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)]
andEd(un) = exp[−t/(un`)], which corresponds to equation (11) of reference [6].

Following SXW, we consider, as a first approximation, the Green’s functionG0 describing
electrons bounded by two flat, parallel surfaces atz = 0 andz = t , for whichVG0(kz) =
V0G(k‖) = kz cot(tkz). To treat surface profiles as measured by a STM, we calculate the
functionQ(k‖) for the case where the surface roughnessdoes not follow a white-noise law.
The constant〈|f |2〉 appearing in equation (5) of reference [6] represents the Fourier transform
of the ACF [4, 6], leading to

Q(k‖) = −Im
∫

d2q‖
(2π)2

F(k‖ − q‖)q̄ cot(t q̄) (2)

where Im(C) stands for the imaginary part of a complex numberC, q̄ = (q2
z + ikF /`)1/2 is a

complex wavenumber andF(k‖) is the Fourier transform of the average height–height ACF
f (r‖) defined by

f (r‖) = S−1
∫
S

h(a‖)h(a‖ + r‖) d2a‖ (3)

wherer‖ = (x, y) stands for the in-plane coordinates andh(a‖) represents the random height
characterizing the surface roughness with respect to the average surface atz = t . Surface
scattering atz = 0 has been ignored†.

We compute the self-energyQ(k‖) from equation (2), for the cases where the average
ACF that characterizes the surface is described by a Gaussian

f (x, y) = δ2 exp[−(x2 + y2)/ξ2]

or by an exponential

f (x, y) = δ2 exp[−
√
x2 + y2/ξ ].

Since the corresponding Fourier transforms are real, the main contributions toQ(k‖) arise from
the poles of the function cot(t q̄), which can be evaluated using a Mittag–Leffler expansion of
q̄ cot(t q̄) [7], leading to

Q(k‖) = −δ
2ξ2

πt

Nc∑
n=1

(
nπ

t

)2

Im
∫ ∞

0

g(k‖, q‖)q‖
k2
F − q2

‖ − (nπ/t)2 + ikF /`
dq‖. (4)

The integrand in equation (4) consists of a slowly varying real functiong(k‖, q‖) (that
depends on the choice of either a Gaussian or an exponential ACF) and the complex fraction
1/[k2

F − q2
‖ − (nπ/t)2 + ikF /`]. The contributions toQ(k‖) arise mainly from the values

of q‖ that are in the neighbourhood ofq‖ = qn such that the complex fraction is purely
imaginary, e.g.k2

F − q2
n − (nπ/t)2 = 0; henceq2

n = k2
F − (nπ/t)2. The imaginary part

of the integral in equation (4) can be approximated by evaluating the functiong(k‖, q‖) at

† The mica substrate was freshly cleaved before loading the substrate and the gold in the UHV evaporation station.
Because of the crystalline nature of the mica substrate verified via x-ray diffraction, the roughness of the mica consists
of some rather infrequent cleavage steps. Consequently, surface scattering occurring at the surface of the mica,z = 0,
can be safely ignored.
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q‖ = qn. In the case of a Gaussian ACF, these approximations, in the limitξ2kF /(4`) � 1,
lead to

Q(k‖) =
ξ2δ2

2t
π exp

[
−ξ

2

4
(k2
‖ + k2

F )

] Nc∑
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t
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(5)

whereI0(x) stands for the modified Bessel function of order zero [8].
In the case of an exponential ACF we obtain, in the limitξ2kF /`� 1,

Q(k‖) = 2ξ2δ2

t

Nc∑
n=1

(
nπ

t

)2
E[r2(k‖, qn)]

[1 + ξ2(k‖ − qn)2]
√

1 + ξ2(k‖ + qn)2
(6)

with

r2(k‖, qn) = 4ξ2k‖qn
1 + ξ2(k‖ + qn)2

whereE(r2) stands for the elliptic integral of the second kind [9].
Equations (1), (5) and (6) permit the calculation of the quantum reflectivityR and of the

change in conductivity attributable to size effects, in terms of the r.m.s. amplitudeδ and of the
lateral correlation lengthξ that describe the average ACF on a nanoscopic scale for either of
the two models, Gaussian or exponential in a continuous film of thicknesst .

We measured the surface topography of a gold film 70 nm thick deposited on a mica
substrate preheated to 300◦C in UHV, on a scale of 20 nm× 20 nm. Before imaging
the gold sample, we verified that the freshly prepared W tip produced neat images of
C atoms running on HOPG. From STM images we computed the average height–height
ACF characterizing the gold film on a scale of 10 nm× 10 nm, as the average of twenty
ACFs calculated according to equation (3) from the roughness profiles recorded atrandom
locations of the sample on a scale of 20 nm× 20 nm using periodic boundary conditions,
from twenty STM images containing 256× 256 pixels each. The resulting average ACF
is displayed in figure 1. The peak at the origin of the average ACF was fitted using the
Gaussian and the exponential models for the ACF, employing a least-squares fitting procedure.
When the exponential was fitted to 6× 6, 8× 8 and 10× 10 pixels near the origin, the
values obtained were [δ = 0.746 nm, ξ = 0.198 nm], [δ = 0.687 nm, ξ = 0.231 nm],
[δ = 0.633 nm, ξ = 0.271 nm]. When the Gaussian was fitted to 8× 8, 10× 10 and
12× 12 pixels near the origin, the values obtained were [δ = 0.494 nm, ξ = 0.401 nm],
[δ = 0.448 nm, ξ = 0.489 nm], [δ = 0.422 nm, ξ = 0.549 nm]. The values obtained forξ
andδ are consistent with the atomic resolution exhibited by the tip of the STM when running
on HOPG prior to measurements on the gold sample; consequently the rounding off that could
be expected on the images recorded with the STM due to the finite radius of curvature of the
tip does not seem to play a significant role.

At this point, it seems appropriate to discuss the validity of the formalism used in mSXW
theory, where the electrons are described by wave functions labelled by a wave vectorkz that is
quantized as a consequence of confinement between two parallel potential barriers. However,
the upper and lower surfaces of the metallic film are certainlynotparallel to each other. Hence,
the very existence of the subbands used in mSXW theory may seem questionable. This issue
has been addressed in the literature. It has been found that a sufficient condition for the
formation of subbands in a rough metallic film is that the upper and lower surfaces of the film
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Figure 1. The average of twenty ACFs calculated from the surface roughness profiles recorded at
random locations of the sample on a scale of 20 nm× 20 nm using periodic boundary conditions,
from twenty images recorded with the STM containing 256× 256 pixels each.(x, y) represent
the fast and slow scan directions, respectively. Inset: detail of the 8× 8 pixels that constitute the
central peak.

must be flat and (atomically) parallel to each other over an areaL × L where the distanceL
satisfiesL/a > 2(t/a)1/2, orL > L0, with L0 = 2(ta)1/2, anda is the lattice spacing [10].

However, experimental evidence of quantum size effects (QSE) has been found in systems
that most probablydo not satisfy these criteria. We mention just two of the most relevant:

(a) the oscillations observed at 4 K in thederivative of the conductance versus bias voltage
(d2I/dV 2) in tunnel junctions made of thin films of Pb, Mg, Au and Ag grown onto
anodized Al films deposited on a glazed ceramic substrate; the oscillations were observed
up to a thickness of several tens of nanometres [11];

(b) the oscillations of the superconducting transition temperature with film thickness observed
in Sn films grown onto glazed alumina at 15 K; the oscillations persist up to a thickness
of 6 nm [12].

The argument involving the conditions for subband formation in a (disordered) rough
metallic surface seems related to the argument involving conditions for band formation in
disordered systems, an issue that has been discussed in the literature. According to one of the
axioms of solid-state theory, a sufficient condition for the formation of a band in a collection
of molecules is that the system should exhibit translational symmetry. However, electrons
injected into insulating liquids like liquid Ar (LAr), LKr, LXe and LCH4 exhibit a mobility
in the range several hundred to a few thousand cm2 V−1 s−1 (see table 1 in Munoz’s paper,
reference [13]), figures which are one order of magnitude larger than the mobility of electrons
in crystalline Cuat room temperature and which are comparable to or larger than the mobility
exhibited by electrons injected intoinsulating crystalslike the alkali halides at comparable
temperatures (Seager and Emin, reference [13]). This indicates that translational symmetry is
sufficient to warrant the formation of a conduction band, but too strong a condition to explain
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the observations. The result of these experiments can be reconciled with theory if the electrons
injected into these liquids are assumed to occupyorbitals which extend over hundreds of
molecules, something usually regarded as a signature of a conduction band[13].

A similar situation arises regarding subband formation in rough metallic films. Applying
the criteria of atomic parallelism to explain the observations of QSE reported in references
[11] and [12] would lead to the conclusion that the metallic films studied in references [11] and
[12] consist of collections of regions that are atomically parallel to the substrates over areas of
the order ofA0 = L0× L0, 10 nm2 < A0 < 100 nm2. This seems possible but unlikely. The
criteria of flatness and atomic parallelism may work well when the probe is a local probe as in
reference [10], where QSE manifest as kinks in the conductance versus bias voltage measured
with a STM in an atomically flat region of a gold film, 15 nm thick, deposited on glass at room
temperature [10]. However, for experiments in which the probe involves the whole sample with
an area several orders of magnitude larger thanA0, this criterion seems sufficient (to warrant
the formation of subbands) buttoo stronga condition to explain the observations reported in
references [11] and [12].

The experiments reported in reference [12] indicate that the electron states of metallic
films several tens of nanometres thick are still correctly described by the model of a particle
in a box, in spite of the fact that the upper and lower surfaces of the sample most probablyare
not atomically flat and parallel to each other. To reconcile experiment and theory for cases
in which the probe involves the whole sample, we propose a somewhat weaker criterion, that
nevertheless captures the essence of the criterion set forth in reference [10] and is consistent with
the argument contained in reference [12]: subbands will be observable when the r.m.s. height
fluctuationζ(L0) satisfiesζ(L0) 6 λF , where

ζ(L0) =
√
〈[h(x, y)−〈h(L0)〉]2〉

whereh(x, y) represents the thickness measured at position(x, y), the symbol〈 〉 denotes an
average over an areaL0 × L0 andλF denotes the relevant scale of distance in the problem,
the Fermi wavelength (in gold,λF = 0.52 nm). The lattice constant for the 70 nm thick film
reported here, measured via x-ray diffraction, isa = 0.235 nm; thereforeL0 = 8.1 nm. We
evaluatedζ(L) for the twenty images used to compute the ACF shown in figure 1, selecting
for each image a submatrix of 128× 128 pixels corresponding toL = 10 nm. The average of
ζ(L) over the twenty 10 nm× 10 nm images is 0.45 nm, indicating that the film has a smooth
texture over distances of the order of 10 nm. Within the twenty images we found two for which
ζ(L) > 1 nm; these correspond to steep valleys that are remnants of grain boundaries. These
valleys are separated by large distances of the order of several hundred nanometres, the typical
size of the grains that coalesced to form the film. If the two images for whichζ(L) > 1 nm
are deleted, the average ofζ(L) over the remaining 18 images is 0.35 nm. These figures
illustrate that the film is smooth to within one electron wavelength over distancesL 6 10 nm.
Consequently, the mSXW theory retains its validity.

Returning to the application of mSXW theory, the reflectivityR calculated from
equations (5) and (6) and from equation (7) in reference [6] are shown in figure 2, together
with the Fourier transformsF(k‖) plotted as functions of the wave vectork‖ for 0 6 k‖ 6
kF = 12 nm−1. For the comparison between the mSXW theory and the FS model, we
have chosen the average values [δ = 0.689 nm, ξ = 0.233 nm] for the exponential and
[δ = 0.455 nm, ξ = 0.480 nm] for the Gaussian representation of the ACF. In both cases
R turns out to be a function of the angleθ that approaches zero for a certain angle, the
value of which is model dependent. Because of the resemblance between the quantum theory
(equation (1)) and the classical theory (equation (25) in Sondheimer’s paper, reference [1]), we
would expect that—for a thick rough film having many subbands, such as the gold film whose
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Figure 2. The reflectivityR characterizing the electron–surface scattering predicted by the mSXW
theory, for a film 70 nm thick in which the average ACF is described by a GaussianG defined
by fG(x, y) = δ2 exp[−(x2 + y2)/ξ2], with δ = 0.455 nm, ξ = 0.480 nm (solid curve),
and by an exponentialE defined byfE(x, y) = δ2 exp[−

√
x2 + y2/ξ ], with δ = 0.689 nm,

ξ = 0.233 nm (dotted curve), plotted as functions of cos(θ). θ represents the angle of incidence
between the momentum of the incoming electron and the normal to the surface. Inset: the
Fourier transforms of the GaussianFG(k‖) = πδ2ξ2 exp[−ξ2k2

‖/4] (solid curve) and of the

exponentialFE(k‖) = 2πδ2ξ2/[1 + ξ2k2
‖ ]

3/2 (dotted curve), plotted as functions of the wave

vector 06 k‖ 6 kF = 12 nm−1; k‖ = kF sin(θ).

surface roughness and conductivity were measured—the predictions of the classical and the
quantum theory should be similar. This is, indeed, the case, for the discreteness arising from
the quantization ofkz is washed out, in the sense that the discrete sum in equation (1) for a
constant (angle-independent)R reproduces the classical Sondheimer integral with a precision
of 0.5% or better.

However, since in the classical theoryR is an adjustable parameter and in the quantum
theory it is not, a question arises regarding which constantR should be used in the classical
theory, to compare the FS model with the mSXW model. One natural way to perform such a
comparison is to choose the average quantum reflectivityR = 〈R〉. For a film 70 nm thick, the
mSXW theory predicts〈R〉 = 0.479 in the case of a Gaussian ACF and〈R〉 = 0.640 in the case
of an exponential ACF. The values ofσ/σ0 for a film 70 nm thick predicted by FS theory, with
R = 0.479 andR = 0.640, are plotted in figure 3, together with the detailed predictions of the
quantum mSXW theory for a Gaussian and for an exponential representation of the ACF data.
The predictions of FS theory forR = 〈R〉 coincide within 1% or better with the predictions
of mSXW theory for̀ < 50 nm. However, as displayed in figure 3, when` > t , the increase
in resistivity due to surface scattering predicted by the classical FS model forR = 〈R〉 is
larger than that predicted by the mSXW theory, by an amount that substantially exceeds the
level60.5% with which the sum over quantized states (equation (1)) reproduces the classical
Sondheimer integral (equation (25) in reference [1]) for an angle-independent reflectivity
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Figure 3. The film conductivityσ relative to the bulk conductivityσ0, as a function of the mean
free path̀ , predicted by mSXW theory, for a film 70 nm thick, characterized by an average ACF
described by a GaussianG (solid curve) and by an exponentialE (broken curve). Continuous
dotted curve: the prediction of the Fuchs–Sondheimer (FS) model calculated usingR = 0.479.
Triangles and broken curve: the prediction of the Fuchs–Sondheimer (FS) model calculated using
R = 0.640. Inset: details of the prediction of mSXW theory for a Gaussian ACF (solid curve) and
an exponential ACF (broken curve), the FS model forR = 0.479 (continuous dotted curve) and
the FS model forR = 0.640 (triangles and broken curve), for the range 2.5 nm6 ` 6 50 nm.

R. The difference between the quantum prediction and its corresponding FS version grows
with increasing̀ .

The discrepancy between the classical and the quantum theories for thick films does not
reside in the quantization ofkz, but arises from the fact that the quantum theory leads to a
reflectivityR[cos(θ)] that is not a constant. That the FS model is inadequate for very thin
specimens is well known—because of the omission of quantum effects. The discrepancy for
` > t presented here suggests that—regardless of which model (Gaussian or exponential) is
chosen to represent the ACF data—the FS model may also be inadequate for high-purity thick
films, because of the omission of the angular dependence of the reflectivityR predicted by the
quantum theory. These calculations also reveal that the decrease in conductivity that may be
attributed to electron–surface scatteringdepends on which model is used to fit the same ACF
data: as shown in figure 3,σ/σ0 predicted by mSXW theory for a Gaussian representation of
the data is systematically smaller than that predicted for an exponential representation of the
same data. Regardless of which model is used to represent the ACF data, the results reported
suggest that the relevant physical quantity controlling electron–surface scattering incontinuous
gold films of arbitrary thicknessis the average ACF characterizing the surface of the sample on
a scale of a few nm, in agreement with the accepted view regarding the conductivity of ultrathin
films [4]. Such a view may have far-reaching consequences. For then, the possibility of having
two metal films of different thicknesses (prepared under similar conditions of evaporation) that
would exhibitthe same surface reflectivityappears an odd coincidence, and the possibility of
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having a family of metal films of different thicknessesall having the same surface reflectivity
seems highly unlikely. The microscopic description provided by the mSXW theory casts doubt
on one of the central assumptions that has been used to analyse conductivity data on families
of metal films for many decades: the assumption that the reflectivity characterizing electron–
surface scattering for a family of metal films of different thicknesses prepared under similar
conditions of evaporationis the same for all members of the family.

To elucidate why the value ofσ/σ0 depends on the mathematical model used to represent
the ACF data, in the inset of figure 2 we have plotted the Fourier transforms of the Gaussian,
FG(k‖) = πδ2ξ2 exp[−ξ2k2

‖/4], and of the exponential,FE(k‖) = 2πδ2ξ2/[1 + ξ2k2
‖ ]

3/2.
Comparison betweenFE andFG indicates that the transforms are similar in the intermediate
region whereξk ∼ 1, but differ in the regions wherekξ < 1 and kξ > 1. It has
recently been suggested that if the surface roughness is a self-affine fractal, then the Fourier
transform of the height–height ACF behaves asF(k) = 2πδ2ξ2/[1 + Aξ2k2]1+H , whereA
is a normalization constant and 06 H 6 1 is the roughness exponent that measures the
degree of surface irregularity [14]. The results presented suggest that the dependence of the
Fourier transformF(k‖) on k‖ does, indeed, have an influence on the quantum reflectivityR.
The model-dependent predictions ofσ/σ0 are reminiscent of the results reported in reference
[14], indicating that the conductivity limited by electron–surface scattering of a metal film
bounded by a surface whose roughness is a self-affine fractal does depend on the roughness
exponentH . If the fractal nature of the rough surface determines the behaviour of the Fourier
transform of the ACF, then it also determines the reflectivityR and thereby the amount by
which electron–surface scattering increases the resistivity of the film.

RM, GK and LM gratefully acknowledge funding by Fondo Nacional de Ciencia y Tecnologia
de Chile, FONDECYT, under Contract 1960914, and by Fundacion ANDES under Contract
C-12776.
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